4-5 ResNet

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

1. Motivation

2. Structure

- 1. Won the 1st place of ImageNet ILSVRC 2015 classification competition
- 2. Theoretically, the training error should go down as the number of layers increases
- 3. However, it is not the case

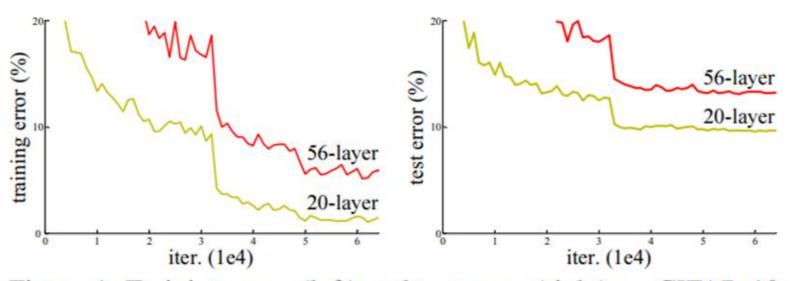
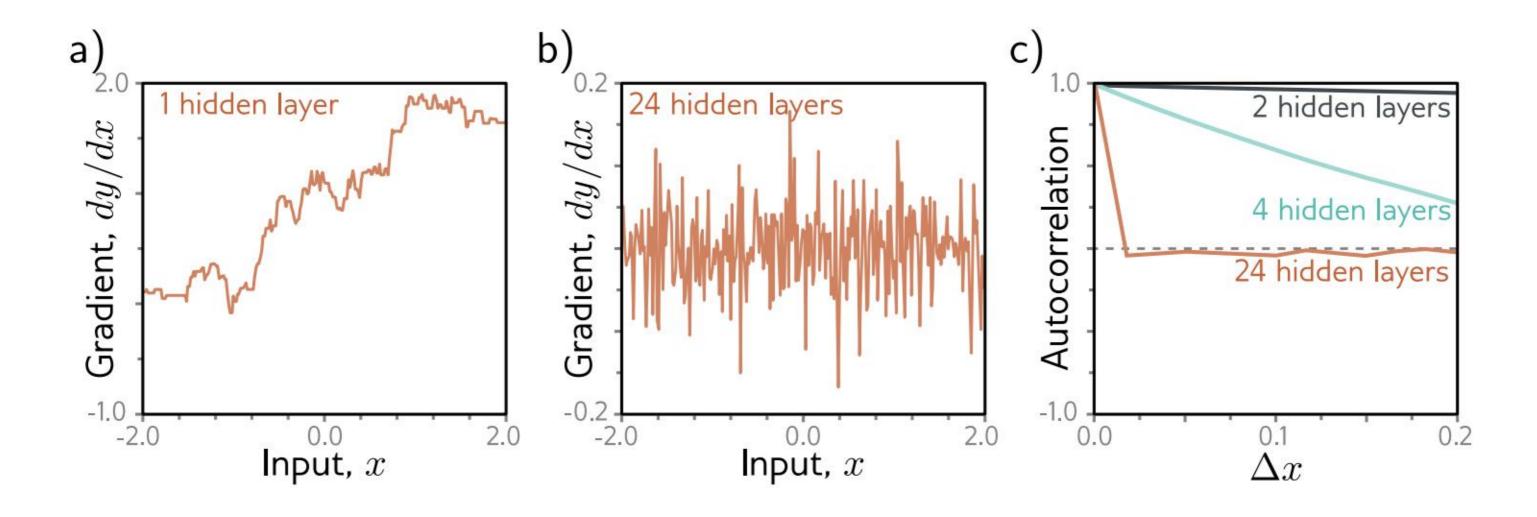


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- 1. Gnerally, more complex models may lead to overfitting, with worse performance in test data
- 2. However, it may decrease the training error due to "overfitting"
- 3. That means, the problem is training deeper neural networks, not their generalization
- 4. This phenomenon is not completely understood, but one conjecture is at initialization
 - Loss gradients change unpredictably when we modify parameters in early network layers
 - With reasonable initialization, we can avoid gradient exploding or vanishing
 - However, the derivative assumes infinitesimal step size,
 - ▶ In practice, our step size is finite
 - ▶ It may cause problems if the loss surfice looks like enormous range of tiny mountains rather than a smooth one
 - This conjecture is supported by empirical observations of gradients in networks with a single input and output

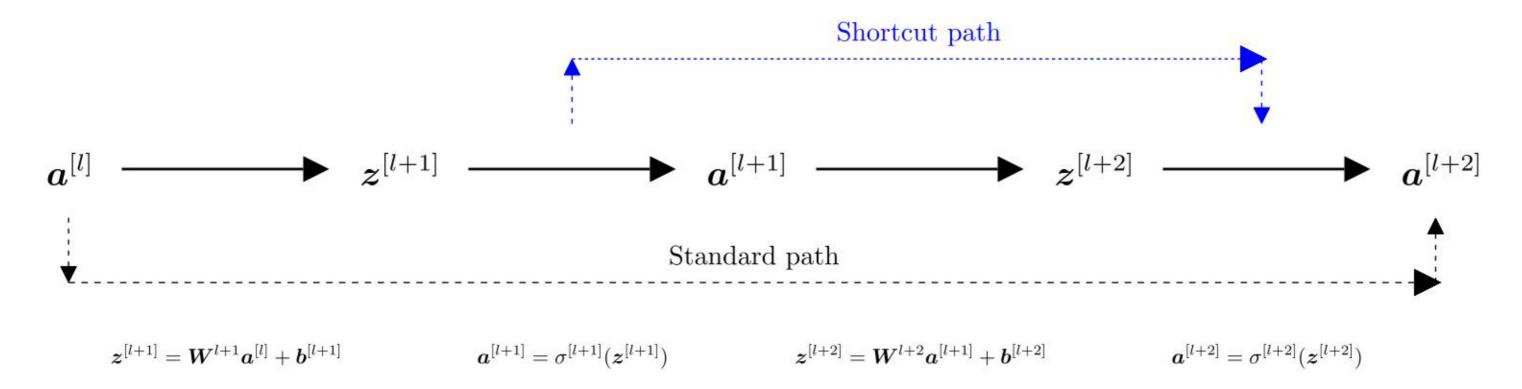
Wang, Z. (WISE & SOE, XMU) 4-5 ResNet

1. The following image is Figure 11.3 of Prince (2024)



- 1. We conclude
 - For shallower networks, the gradient of output with respect to the input changes slowly
 - For deeper networks, however, it is not this case
- 2. This is captured by the autocorrelation function of the gradient
 - For shallower networks, nearby gradients are correlated
 - For deeper networks, however, it is not this case
- 3. This is termed the *shattered gradients* phenomenon

Structure



1. Shortcut path

$$m{a}^{[l+2]} = \sigma^{[l+2]}(m{z}^{[l+2]} + m{z}^{[l+1]})$$

2. Thus, $z^{[l+2]}$ models the "residual" associated with $z^{[l+1]}$ and $z^{[l+2]}$

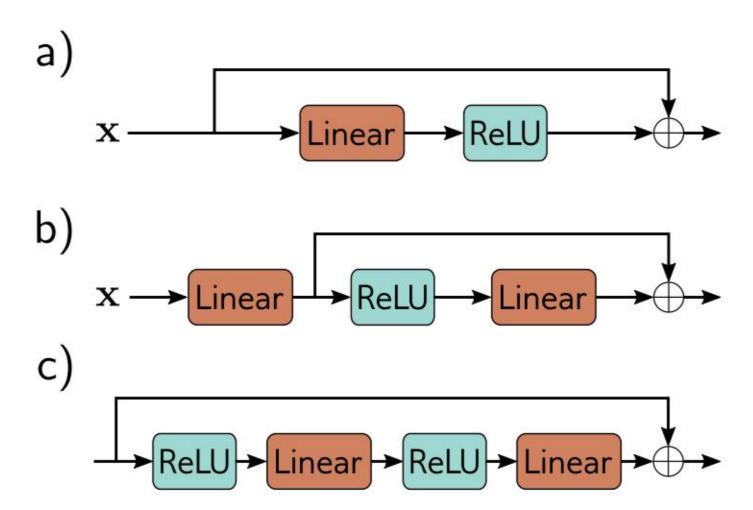
Remark

- 1. More general, the length of $z^{[l+2]}$ may be different from that of $z^{[l+1]}$
- 2. This problem can be easily solved by introducing a new parameter $oldsymbol{W}_{s}^{[l]}$

$$a^{[l+2]} = \sigma^{[l+2]}(z^{[l+2]} + W_s^{[l]}z^{[l+1]})$$

Remarks

1. The following image if Figure 11.5 of Prince (2024)



Remarks

- 1. Notice that the outpur after ReLU activation is usually nonnegative
- 2. Thus, if we apply ReLU right after ReLU activation, we can only increase the values of "input"
- 3. Residual connection usually joins two linear transformation results

Remarks

- 1. Residual connection can be used to deepen neural networks
- 2. Thus, we may suffer from gradient vanishing or exploding (exponentially)
- 3. A typical technique to alleviate this difficulty is to use batch normalization

Wang, Z. (WISE & SOE, XMU)

4-5 ResNet